Abstract Submitted
for the SHOCK07 Meeting of
The American Physical Society

Line-VISAR diagnostics for isentropic compression experiments at the LLNL two-stage gas gun

KLAUS WIDMANN, JEFFREY NGUYEN, LYNN JAMES, DAVID ERSKINE, REED PATTERTON, GILBERT COLLINS, LEON BERZINS, Lawrence Livermore National Laboratory — The spatial uniformity and flatness of a launched gradient-density flyer plate is of utmost importance for a successful implementation of isentropic compression experiments. A Mach-Zehnder based line VISAR instrument, named B-VISAR, has been fielded at Livermore’s large two-stage gas gun facility. With the B-VISAR it was possible to record the time history of the shock breakout along a 10-mm line at the target surface. We report results of this proof-of-principle experiment and provide some comparison with simultaneously conducted point VISAR measurements.

1This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W–7405–Eng–48.

Klaus Widmann
Lawrence Livermore National Laboratory

Date submitted: 23 Feb 2007

Electronic form version 1.4