Void Growth and Coalescence Nanocrystalline Metals: Molecular Dynamics Modeling, Continuum Modeling, and Experiments

DAVID BENSON, SIRIRAT TRAIVIRATANA, MARC MEYERS, PARAG DIXIT, UCSD, ALICE KONIGES, DAN KALANTAR, LLNL — Fragmentation of the support structures in ICF experiments, leading to the damage of instrumentation and optics, is currently a concern as new research facilities are brought on line. The current research focuses on understanding the void formation and growth mechanisms. MD simulations in single and poly-crystalline nano-materials have been carried out with LAMMPS. Void growth occurred by the emission of shear dislocation loops. Continuum finite difference calculations of the same Voronoi-generated microstructure were also performed using ALE-AMR. The results of the calculations are compared to each other and to laser shock experiments in thin vanadium films. This research was supported by LLNL grant B558558.

David Benson
UCSD

Date submitted: 26 Feb 2007