SHOCK07-2007-020014

Abstract for an Invited Paper for the SHOCK07 Meeting of the American Physical Society

Shock compression properties of hard materials

TSUTOMU MASHIMO, Kumamoto University

Through the measurement of Hugoniot parameters, we can get useful information about high-pressure phase transition, equations of state (EOS), etc. of solids, without pressure calibration. We have performed the Hugoniot-measurement experiments on various kinds of hard materials of calcogenides, oxides, nitrides, borides by using a high time-resolution streak camera system (inclined-mirror method) to investigate the yielding property, phase transition and EOS. It was found that almost all brittle materials behave as an elasto-isotropic solid unlike metals (elasto-plastic solid), except a very few materials such as TiB₂. We observed the shock-induced phase transitions on ZnS, ZnSe, TiO₂, ZrO₂, Gd₃Ga₅O₁₂, AlN, B₄C, etc. Some oxide materials showed virtually incompressible EOS's in the high-pressure phase region. Here, the Hugoniot-compression data are reviewed, and the yielding property, phase transition and EOS of these hard materials are discussed. The applications for anvil materials, shock-resisted materials, etc. are also discussed.