Nanosecond Time Resolved and Steady State Infrared Studies of Photoinduced Decomposition of TATB at Ambient and Elevated Pressures

ELIZABETH A. GLASCOE, JOSEPH M. ZAUG, MICHAEL R. ARMSTRONG, JONATHAN C. CROWHURST, CHRISTIAN D. GRANT, LAURENCE E. FRIED, Lawrence Livermore National Lab — The timescale and/or products of photo-induced decomposition of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) were investigated at ambient and elevated pressures. Ultrafast time-resolved infrared and steady state Fourier transform IR (FTIR) spectroscopies were used to probe TATB and its products after photoexcitation with a 5 nanosecond pulse of 532 nm light. At ambient pressure, transient spectra of TATB indicate that the molecule has significantly decomposed within 60 nanoseconds; transient spectra also indicate that formation of CO$_2$, an observed decomposition product, is complete within 30-40 microseconds. Comparison of steady-state FTIR spectra obtained at ambient and elevated pressure (ca. 8 GPa) indicate that the decomposition products vary with pressure and only the high pressure decomposition produces water.

1This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The project 06-SI-005 was funded by the Laboratory Directed Research and Development Program.

Elizabeth A. Glascoe
Lawrence Livermore National Lab

Date submitted: 09 Feb 2009