Changes in Run Distance Observed in two explosives at the threshold for sustained ignition using the Modified Gap Test

RICHARD LEE, NSWC, Indian Head, JERRY FORBES, Energetics Technology Center, DOUGLAS TASKER, Los Alamos, REBECCA ORME, Georgia Tech — The Modified Gap Test was used to quantify different levels of partial reaction for various input stresses. This test configuration has been historically useful in highlighting thresholds for first reaction, sustained ignition, and detonation. Two different HMX based compositions were studied; a cast-cured composition with 88% HMX and a pressed composition with 92% HMX. The final ingredients of each comprised different unreactive polymeric binder systems. Short samples (50.8 mm in diameter and 12.7 mm thick) were shock loaded using the standard large scale gap test donor system. Product-cloud blow-off velocities at the opposite end of the sample were measured using a high-speed digital-camera. Velocity versus input pressure plots provided changes in reactivity that had developed by the 12.7 mm run distance. Results were fairly consistent for the lower input pressures. In contrast, the results varied widely in a range of input stresses around the transition threshold for sustained ignition in both explosives. These results indicate that both explosives are subject to variation in run to detonation distance in a range of input stresses just prior to prompt detonation.

Richard Lee
NSWC, Indian Head

Date submitted: 13 Feb 2009

Electronic form version 1.4