Experimental Investigation of Shock Initiation in Mixtures of Manganese and Sulfur

FRANCOIS-XAVIER JETTE, SAM GOROSHIN, ANDREW HIGGINS, McGill University — Equimolar mixtures of manganese powder and sulfur at different initial densities were tested in two different types of steel recovery capsules in order to study the shock initiation phenomenon in SHS mixtures. This mixture composition was selected due to the large exothermic heat release of the manganese-sulfur reaction (214 kJ/mol), which causes the reaction to be self-sustaining once initiated. Two different sizes of Mn particles were used for these experiments, 1-5 µm and -325 mesh (44 µm or less). The test samples were placed in planar recovery ampoules and a strong shock was delivered via the detonation of a charge of amine-sensitized nitromethane. Various shock strengths were achieved by placing different thicknesses of PMMA attenuator discs between the explosive charge and the ampoule. The results confirmed that shock-induced reactions can be produced in highly non-porous mixtures. It was also found that shock interactions with the side walls of the recovery capsule can play a significant role in the initiation, and that mixtures containing the larger Mn particles were very difficult to initiate in the absence of shock interactions with the capsule walls.

Francois-Xavier Jette
McGill University

Date submitted: 13 Feb 2009

Electronic form version 1.4