This paper reviews the efforts of the author and his colleagues over the past four decades to develop mesomechanical models of material failure. In the early 1970s a procedure known as NAG/FRAG (Nucleation and Growth to Fragmentation) methodology was introduced by a group at SRI International. Experiments are performed in which the evolution of microstructural damage is measured pre and posttest as a function of stress, time-at-stress, temperature, and other environmental parameters. Damage nucleation and growth functions are deduced via iterative computational simulations. We review the history over the past half-century for applications of growing complexity, and conclude with a discussion of a current challenging problem, that of designing improved glass and ceramic armors.