Equation of state measurement of shock-released carbon KA-
TERINA FALK, JOHN F. BENAGE, ROBERT G. WATT, DAVID S. MONT-
GOMERY, JAMES R. WILLIAMS, DEREK W. SCHMIDT, Los Alamos National
Laboratory, ELISEO J. GAMBOA, PAUL A. KEITER, R. PAUL DRAKE, Uni-
versity of Michigan, CHAD MCCOY, TOM R. BOEHLY, University of Rochester,
P-24 TEAM, DRAKE RESEARCH LAB TEAM, LABORATORY FOR LASER
ENERGETICS TEAM — We present results of equation of state (EOS) measure-
ment of carbon at a range of conditions falling into the warm dense matter (WDM)
regime, solid density at temperatures $\sim 1 - 10$ eV. These conditions were created
within diamond and graphite targets at the Omega laser facility. We employed a
novel technique of laser driven shock and release, which produces different condi-
tions from the Hugoniot states typically studied at high power laser facilities. These
experiments take advantage of precise equation of state (EOS) measurements of
shocked low density SiO$_2$ aerogel foam used as pressure standard, which will also
be presented. A simultaneous measurements of density, temperature and ionization
state within the release wave were obtained from spatially resolved x-ray Thom-
son scattering, while the density and temperature measurements were bracketed by
independent diagnostics including velocity interferometry, optical pyrometry and ra-
diography, providing a full EOS measurement. Results will be compared with EOS
models.

Katerina Falk
Los Alamos National Laboratory

Date submitted: 28 Jan 2013 Electronic form version 1.4