Abstract Submitted for the SHOCK13 Meeting of The American Physical Society

High-pressure studies for hydrogen-doped LaFeAsO_{1-x}H_x and $SmFeAsO_{1-x}H_x$ HIROKI TAKAHASHI, TAKAHIRO TOMITA, HIDETO SOEDA, Nihon University, SOSHI IIMUMA, TAKU HANNA, YOSHINORI MURABA, SATORU MATSUISHI, HIDEO HOSONO, Tokyo Institute of Technology — Iron-based superconductor LaFeAsO_{1-x}F_x shows the conventional superconducting dome in an x-T phase diagram with a maximum T_c of 26 K at x = 0.1. However, the over-doped region has not been investigated, because of the poor solubility of fluorine above x = 0.2. Recently, hydrogen was doped for LaFeAsO_{1-x}H_x above x = 0.5. It is interesting that LaFeAsO_{1-x}H_x exhibits the second superconducting dome in the over-doped region (0.2 < x < 0.5) with a maximum T_c of 36 K, in addition to the conventional dome. Since large enhancement of T_c under high pressure was reported for LaFeAsO_{1-x}F_x, it is intriguing to study the superconducting properties in LaFeAsO_{1-x} H_x (x >0.2) under high pressure. Marvelous results that $T_{\rm c}$ of x=0.2, which corresponds to the ravine between two domes, is enhanced largely from 18 K to 52 K with pressure of 6 GPa are obtained from resistivity measurements. These results are compared with the superconducting properties under high pressure of $SmFeAsO_{1-x}H_x$.

Hiroki Takahashi College of Humanities and Sciences, Nihon University

Date submitted: 21 Feb 2013 Electronic form version 1.4