Abstract Submitted for the SHOCK13 Meeting of The American Physical Society

Femtosecond x-ray probes of shock-driven phase transitions in nanocrystals AARON LINDENBERG, Stanford University / SLAC National Accelerator Laboratory, JOSH WITTENBERG, TIMOTHY MILLER, ELIZABETH SZAILGYI, Stanford University — We have utilized laser-generated shock waves to induce the wurtzite to rock salt structural phase transformation in cadmium sulfide nanorods, and have probed the resulting dynamics and transition state using femtosecond hard x-rays at the Linac Coherent Light Source (LCLS) in diffraction. Colloidally grown nanocrystals are an ideal model system with which to study phase transformations because they are defect-free single crystalline domains. Simulations of this transformation at the nanoscale have suggested a two-stage model consisting of a compression along the c-axis to form a 5 coordinate h-MgO intermediate followed by compressive shear along the a-axis, with the transformation rate limited by the shear step. We observe a stress-dependent transition path: At higher peak stresses, the majority of the sample is converted directly into the rock salt phase, with no evidence of an h-MgO intermediate prior to rock salt formation. At lower peak stresses, an h-MgO structure is observed. Additionally, the observed transformation stress is \sim 3GPa, significantly below the \sim 7GPa required under hydrostatic compression, confirming previous observations of shear catalyzed structural transformation under shock compression.

> Aaron Lindenberg Stanford University

Date submitted: 26 Feb 2013

Electronic form version 1.4