Abstract Submitted for the SHOCK13 Meeting of The American Physical Society

Metallization of hydrogen and the essential differences between dynamic and static compression W.J. NELLIS, Harvard University — In 1935 Wigner and Huntington (WH) predicted that at density $D_{Thrv} = 0.62$ mole H/cm³, "very low temperatures," and a pressure greater than 25 GPa, $bcc H_2$ undergoes an isostructural phase transition directly to H with an associated insulator-metal transition (IMT). In 1996 metallic fluid H was made under dynamic compression in a cross over from H₂ to H that completes at $D_{exp} = 0.64$ mole H/cm³, 140 GPa and T ~ 2600 K. The Free-electron Fermi temperature $T_F = 220,000$ K and $T/T_F = 0.012 <<1$, as for ordinary metals at 300 K. To date solid metallic hydrogen has yet to be made at static pressures up to ~ 360 GPa at T ~ 300 K. This difference between electrical conductivity of H_2 compressed dynamically and statistically begs the question of why fluid H at 140 GPa and \sim 3000 K becomes metallic at 0.64 mol H/cm³, the density predicted by WH for their IMT at low T; whereas metallization of solid H_2 or H near 300 K is yet to be achieved experimentally at pressures up to \sim 360 GPa? The answer is systematic differences induced by the rate of application of pressure in the two methods. Slow compression at ~ 300 K strengthens solid H₂ by inducing intermolecular bonds, which impede dissociation, metallization and perhaps even thermal equilibrium. Fast dynamic compression of liquid H_2 up to ~ 3000 K precludes formation of intermolecular H-H bonds, which permits fluid H_2 to weaken to dissociation and thus metallization at 140 GPa. Dynamic- and static-compression effects on materials will be compared in the context of how they effect metallization of hydrogen.

> Wuilliam Nellis Harvard University

Date submitted: 22 Feb 2013

Electronic form version 1.4