Abstract Submitted for the SHOCK13 Meeting of The American Physical Society

Transport properties of $Pr_2Ba_4Cu_7O_{15-\delta}$ under high pressures AKIYUKI MATSUSHITA, National Institute for Materials Science, SHUHEI YA-MADA, Graduate School of Science and Technology, Niigata University, FUMI-HIRO ISHIKAWA, Department of Physics, Niigata University, AYAKO OHMURA, ATSUKO NAKAYAMA, Center for Transdisciplinary Research, Niigata University, YUH YAMADA, Department of Physics, Niigata University — $Pr_2Ba_4Cu_7O_{15-\delta}$ (Pr247) was found to exhibit superconductivity in 2004 by introducing oxygen deficiencies.¹ Superconducting transition temperature (T_c) varies from zero to about 20 K depending on the oxygen deficiency δ . This high-T_c cuprate consists of three structural units, i.e., CuO₂ planes, CuO single chain and CuO double chains. The CuO_2 planes are insulating in this compound and therefore, the superconductivity is believed to occur in the CuO double chains. Interestingly, the electrical resistivity was found to show T^{α} dependence at low temperatures under high magnetic fields.² This temperature dependence is known as the characteristic property of Tomonaga-Luttinger liquid and suggests a possibility that the CuO double chains have one-dimensional property. In this study we report the pressure dependence of the transport properties for Pr247 with various oxygen deficiency δ 's.

¹Matsukawa et al., Physica C, 411,101(2004). ²Matsushita et al., Sci. Tech. Adv. Mater., 8,477(2007).

> Akiyuki Matsushita National Institute for Materials Science

Date submitted: 22 Feb 2013

Electronic form version 1.4