Measurement of an Explosively Driven Hemispherical Shell Using 96 Points of Optical Velocimetry

JEREMY DANIELSON, EDWARD DAYKIN, Los Alamos National Laboratory, ABEL DIAZ, National Security Technologies, DEAN DOTY, Los Alamos National Laboratory, BREN FROGGET, National Security Technologies, MIKE FURLANETTO, Los Alamos National Laboratory, ABEL DIAZ, National Security Technologies, CENOBIO GALLEGOS, MIKE GIBO, ANSELMO GARZA, National Security Technologies, DAVID HOLT, Los Alamos National Laboratory, MANDY MANNING, National Security Technologies, CANDACE JOGERST, Los Alamos National Laboratory, CARLOS PEREZ, MIKE PENA, VINCENT ROMERO, National Security Technologies, MIKE SHINAS, Los Alamos National Laboratory, MATT TEEL, National Security Technologies, LENNY TABAKA, Los Alamos National Laboratory — We report the measurement of the surface motion of a hemispherical copper shell driven by high explosives. This measurement was made using four 32 channel multiplexed photonic Doppler velocimetry (PDV) systems, in combination with a novel compound optical probe. Clearly visible are detailed features of the motion of the shell over time, enhanced by spatial correlation. Significant non-normal motion is apparent, and challenges in measuring such a geometry are discussed.

Jeremy Danielson
Los Alamos National Laboratory

Date submitted: 22 Feb 2013