On the Composition and Temperature of the Terrestrial Planetary Core

YINGWEI FEI, Carnegie Institution of Washington

The existence of liquid cores of terrestrial planets such as the Earth, Mars, and Mercury has been supported by various observations. The liquid state of the core provides a unique opportunity for us to estimate the temperature of the core if we know the melting temperature of the core materials at core pressure. Dynamic compression by shock wave, laser-heating in the diamond-anvil cell, and resistance-heating in the multi-anvil device can melt core materials over a wide pressure range. There have been significant advances in both dynamic and static experimental techniques and characterization tools. In this talk, I will review some of the recent advances and results relevant to the composition and thermal state of the terrestrial core. I will also present new developments to analyze the quenched samples recovered from laser-heating diamond-anvil cell experiments using combinations of focused ion beam milling, high-resolution SEM imaging, and quantitative chemical analysis. With precise milling of the laser-heating spot, the melting point and element partitioning between solid and liquid can be precisely determined. It is also possible to re-construct 3D images of the laser-heating spot at multi-megabar pressures to better constrain melting point and understanding melting process. The new techniques allow us to extend precise measurements of melting relations to core pressures, providing better constraint on the temperature of the core.

The research is supported by NASA and NSF grants.