SHOCK13-2013-020084

Abstract for an Invited Paper for the SHOCK13 Meeting of the American Physical Society

Non equilibrium studies on FEL facilities MARION HARMAND, LULI, ecole polytechnique, 91128 Palaiseau, France

The recent development of Free Electron Lasers (FEL), giving ultrafast, high intensity pulses in the X-ray and XUV energy range is opening new opportunities for WDM studies. Development of X-ray diagnostics such as X-ray absorption spectroscopy and X-ray scattering, has received much attention for the in situ measurement of the structure and physical properties of matter at extreme conditions [1]. Coupled to ultrafast pump - probe schemas, such diagnostics are giving new insights into out-of-equilibrium processes and thus validate current models. We report recent developments to perform few fs time resolved pump - probe experiments [2], giving access to ultrafast transient WDM states. We also present collective Thomson Scattering with soft x-ray Free Electron Laser radiation (at FLASH) as a method to track the evolution of highly transient warm dense hydrogen with around 100 fs time resolution. In addition, recent experiments at LCLS are suggesting the possibility to perform X-ray absorption spectroscopy (XANES) on FEL facilities to provide simultaneously information on the valence electrons and on the atomic local arrangement within sub-ps time scales.

[1] R.R. Fäustlin et al., Phys. Rev. Lett. 104, 125002 (2010).

[2] M.Harmand et al., Nature photonics Doi : 1010.1038/NPHOTON.2013.11