The hydriding resistance of plutonium oxides and mononitride: A view from \textit{ab initio} molecular dynamics1 BO SUN, HAIFENG LIU, HAIFENG SONG, Institute of Applied Physics and Computational Mathematics, CAEP — Based on the non-local van der Waals density functional (vdW-DF)+\textit{U} scheme, we carry out the \textit{ab initio} molecular dynamics study of the interaction dynamics for H\textsubscript{2} molecules impingement against Pu-oxides and mononitride surfaces. We show that except for the weak physisorption, both PuO\textsubscript{2} and PuN surfaces are so difficult of access that almost all of H\textsubscript{2} molecules will bounce back to the vacuum when their initial kinetic energies are not sufficient. Although the dissociative adsorption of H\textsubscript{2} on PuO\textsubscript{2} surfaces is found to be exothermic, the collision-induced dissociation barriers of H\textsubscript{2} are very high (up to 2.2 eV). However, PuO\textsubscript{2} overlayer on Pu-metal can be reduced to α-Pu2O\textsubscript{3} drived by oxygen-lean conditions, and H\textsubscript{2} can penetrate and diffuse in α-Pu2O\textsubscript{3} easily. As a result, α-Pu2O\textsubscript{3} can promote the hydriding process of Pu. Unlike PuO\textsubscript{2}, PuN is found to be one kind of stable and uniform passivation layer against Pu-hydriding. Specifically, the incorporation of PuN and H-atom is proven to be thermodynamically unstable. Overall, our current study reveals the mechanical and chemical resistances of Pu-oxide and Pu-nitride to hydrogen corrosion, which have strong implications to the understanding of the surface corrosion and passivation of Pu metal.

1This work was supported by the FDST of CAEP under Grant No. 9090707.

Bo Sun
Institute of Applied Physics and Computational Mathematics, CAEP

Date submitted: 22 Jan 2015
Electronic form version 1.4