Optimizing LX-17 Thermal Decomposition Model Parameters with Evolutionary Algorithms

JASON MOORE, MATTHEW MCCLELAND, CRAIG TARVER, PETER HSU, H. KEO SPRINGER, Lawrence Livermore National Lab — We investigate and model the cook-off behavior of LX-17 because this knowledge is critical to understanding system response in abnormal thermal environments. Thermal decomposition of LX-17 has been explored in conventional ODTX (One-Dimensional Time-to-eXplosion), PODTX (ODTX with pressure-measurement), TGA (thermogravimetric analysis), and DSC (differential scanning calorimetry) experiments using varied temperature profiles. These experimental data are the basis for developing multiple reaction schemes with coupled mechanics in LLNLs multi-physics hydrocode, ALE3D (Arbitrary Lagrangian-Eulerian code in 2D and 3D). We employ evolutionary algorithms to optimize reaction rate parameters on high performance computing clusters. Once experimentally validated, this model will be scalable to a number of applications involving LX-17 and can be used to develop more sophisticated experimental methods. Furthermore, the optimization methodology developed herein should be applicable to other high explosive materials.

1This work was performed under the auspices of the U.S. DOE by LLNL under contract DE-AC52-07NA27344. LLNS, LLC

Jason Moore
Lawrence Livermore National Lab

Date submitted: 23 Feb 2017

Electronic form version 1.4