Abstract Submitted for the SHOCK17 Meeting of The American Physical Society

Investigating the Deflagration to Detonation Transition in LLM-105 and RX-55-DQ Using High Confinement as a Function of Density¹ SHAWN L. STRICKLAND, KEVIN S. VANDERSALL, MARTIN R. DEHAVEN, Lawrence Livermore National Laboratory — The potential for deflagration-todetonation transition (DDT) in LLM-105 and RX-55-DQ (94/6 LLM-105/Viton) has been investigated as a function of loading density using high confinement tubes. The high confinement arrangement uses a 76 mm outer diameter by 25 mm inner diameter mild steel tube 320 mm in length with 25 mm thick mild steel end caps ignited using a thermite igniter and was loaded with samples of varying densities. None of the experiments showed a transition to detonation over the entire length with non-violent burning or extinguishing of the burning observed. The hand packed RX-55-DQ molding powder or neat LLM-105 ($^{-1.1}$ g/cm³) burned nearly completely and vented non-violently by deforming or splitting the end caps. The RX-55-DQ was tested at higher densities with 1.35 g/cm^3 resulting in a burning reaction on the 2^{nd} attempt that fractured the end cap while the 1.85 g/cm³ resulted in the burning reaction extinguishing in the first ~15 mm on the 2nd attempt. This work will outline the testing details, present the results, and compare them to the relatively high binder content HMX-based LX-04 (85% HMX and 15% Viton) and ultra-fine TATB results tested under similar confinement.

¹This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

> Kevin Vandersall Lawrence Livermore Natl Lab

Date submitted: 27 Feb 2017

Electronic form version 1.4