Large-scale molecular dynamics studies of sliding friction in nanocrystalline aluminum

TIMOTHY GERMANN, Los Alamos National Laboratory, RAMON RAVELO, University of Texas - El Paso, JAMES HAMMERM BERG, Los Alamos National Laboratory — We present the results of 138 million-atom and 1.8 billion-atom non-equilibrium molecular dynamics (NEMD) simulations for Al-Al sliding friction at pressures of 15 GPa. Three-dimensional samples comprised of 4 nm, 20 nm and 50 nm grains were studied to times of 100 ns for the largest systems. We discuss the evolution of the initial grain size distribution to a steady state distribution that is statistically similar for all initial grain sizes. We compare the results for the frictional force to a rate dependent model that incorporates plasticity and discuss the relationships among grain size, grain morphology, dislocations and other defect structures, and plasticity.

1This work was performed under the auspices of the U.S. Dept. of Energy under contract DE-AC52-06NA25396. The support of the LANL ASC-PEM program gratefully acknowledged.