SHOCK19-2019-000073

Abstract for an Invited Paper for the SHOCK19 Meeting of the American Physical Society

Addressing the gap between meso(grain) and continuum scales with stochastic burn models and probability density function theory¹ DAVID KITTELL, Sandia National Laboratories

Within the energetics community, considerable effort is being directed to find a robust scale-bridging link between the unreacted material microstructures and the observed material responses, e.g. detonation and sub- detonative phenomena. One area of active research is mesoscale modeling of explosives initiation (MMEI); here, microstructures are imported directly or as statistical reconstructions into a hydrocode. While MMEI is attractive for simulating the ignition process with everincreasing model fidelity, a large gap remains between the data being generated at the mesoscale and the calibration of burn model parameters. In this work, we begin to explore and apply scale-bridging techniques found in other fields. This includes particle methods from granular and droplet-laden flows, that use stochastic Langevin-type equations. Further parallels are drawn to turbulent combustion modeling, which leads to preliminary developments using probability density function (pdf) theory by Baer. In order to implement these new scale-bridging concepts, one example of a stochastic burn model is explained in greater detail. Results from the stochastic burn model and numerical method of particle-averaged characteristics (MOPAC) are given to illustrate the approach. Overall, if stochastic continuum-level models are adopted, then the pdf distributions from MMEI could function as the missing scale-bridging link. I.e., the stochastic (random, aleatoric) fluctuations would be sampled from a pdf distribution representative of the thermodynamic states found in an MMEI calculation. Ultimately, the execution of this scale-bridging work will be a community endeavor; to achieve such a capability, research efforts should focus on full-field data mining and pdf evolution in addition to new numerical techniques for hydrocodes.

¹Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energys National Nuclear Security Administration under contract DE-NA0003525