Abstract Submitted for the SHOCK19 Meeting of The American Physical Society

First experimental synthesis of Al₆₂Cu₃₁Fe₇ icosahedral quasicrystals and their natural origin in a meteorite by impact processes¹ PAUL ASIMOW, JINPING HU, CHI MA, Caltech, LUCA BINDI, Universit degli Studi di Firenze, Italy — Quasicrystals (QCs) produced by shock recovery experiments shine light on the impact origin of natural QCs in the Khatyrka meteorite [1,2]. $Al_{62}Cu_{31}Fe_7$ i-phase II is a newly found natural QC that has not previously been synthesized in the laboratory [3]. The compositions of Al-Cu-Fe QCs synthesized by shock have so far been similar but not identical to natural icosahedrite $(Al_{63}Cu_{24}Fe_{13})$ and i-Al₆₂Cu₃₁Fe₇ [3]. Here we present the results of a new shock recovery experiment using a compositionally graded Al-Cu-W wedge in a SS304 chamber. Surprisingly, the Al-rich region did not produce QCs whereas the intermediate Al-Cu mixture reacted with the steel chamber to generate $i-Al_{62}Cu_{30}Fe_7Cr_1$, co-existing with Al₂Cu (khatyrkite) and Al₃Cu₂ (stolperite) alloys. Conceivably, this results from the effects of shear flow during shock that stabilizes the new composition of icosahedral QC. More importantly, the synthesized i-phase II is a near-exact compositional, textural and assemblage match to its natural occurrence in the Khatyrka meteorite. [1] Asimow, P.D. et al. (2016) PNAS, 113, 7077. [2] Oppenheim, J. et al. (2017) Sci. Rep., 7, 15629. [3] Bindi, L. et al. (2016) Sci. Rep., 6, 38117.

¹NASA 80NSSC18K0532

Paul Asimow Caltech

Date submitted: 28 Feb 2019

Electronic form version 1.4