Abstract Submitted for the TS4CF08 Meeting of The American Physical Society

Two forms of Wien's displacement law LIANXI MA, Blinn College — There are two forms of Wien's displacement law that can be derived from Planck's equation. They are:

$$\lambda_m T = 2.8977685 \times 10^{-3} \quad m \cdot K \tag{1}$$

$$\frac{f_m}{T} = 5.879 \times 10^{10} \quad \text{Hz/K}$$
 (2)

Where λ_m and f_m are wavelength and frequency corresponding to the maximum intensity I_m of radiation of the black body, and T is the temperature of the black body. Suppose that we have known a black body's temperature, then λ_m and f_m can be obtained from Eqs. (1) and (2). For example, the Sun's surface temperature, T = 5778 K, then according to Eqs. (1) and (2), we get

$$\lambda_m = 5.015 \times 10^{-7}$$
 m

And

$$f_m = 3.397 \times 10^{14}$$
 Hz

However, if we apply $c = \lambda f$, and take $c = 3 \times 10^8$ m/s, then from $\lambda_m = 5.015 \times 10^{-7}$ m, we get $f = 5.982 \times 10^{14}$ Hz, which is not the f_m obtained from eq. (2). In this paper, I have shown the reason why.

Lianxi Ma

Date submitted: 03 Sep 2008

Electronic form version 1.4