Abstract Submitted for the TS4CF08 Meeting of The American Physical Society

Pressure-induced phase transformation SnO_2 : An ab initio constant pressure study DANIEL YEHDEGO¹, MURAT DURANDURDU², University of Texas at El Paso — We study the behavior of SnO_2 under rapid hydrostatic pressures using constant-pressure ab initio simulations. We find that the rutiletype SnO_2 transforms into the CaCl₂-type structure. At a high pressure of about 20 GPa, a phase transformation into a cubic fluorite-type structure is observed. The orthorhombic Pnma cotunnite-structured phase is formed above 100 GPa. The transformation mechanisms at the atomistic level are discussed.

¹Graduate Student at the University of Texas, El Paso ²Professor of Physics at University of Texas, El Paso

> Daniel Yehdego University of Texas at El Paso

Date submitted: 23 Sep 2008

Electronic form version 1.4