Pressure-induced phase transformation SnO$_2$: An ab initio constant pressure study DANIEL YEHDEGO1, MURAT DURANDURDU2, University of Texas at El Paso — We study the behavior of SnO$_2$ under rapid hydrostatic pressures using constant-pressure ab initio simulations. We find that the rutile-type SnO$_2$ transforms into the CaCl$_2$-type structure. At a high pressure of about 20 GPa, a phase transformation into a cubic fluorite-type structure is observed. The orthorhombic Pnma cotunnite-structured phase is formed above 100 GPa. The transformation mechanisms at the atomistic level are discussed.

1Graduate Student at the University of Texas, El Paso
2Professor of Physics at University of Texas, El Paso