Abstract Submitted for the TSF05 Meeting of The American Physical Society

Anisotropic lattice anomalies and the pressure effect on the ferroelectricity in multiferroic HoMn₂O₅ CLARINA DELA CRUZ, FEI YEN, BERND LORENZ, CHING-WU CHU, Texas Center for Superconductivity at the University of Houston, MARIN GOSPODINOV, Institute of Solid State Physics, Bulgarian Academy of Sciences, WILLIAM RATCLIFF, JEFFREY LYNN, NIST Center for Neutron Reserach — Distinctive anomalies in the linear thermal expansivities along all principal axes were observed in multiferroic $HoMn_2O_5$ at the magnetic $(T_{N1} \text{ and } T_{N2})$ and ferroelectric $(T_{C1} \text{ and } T_{C2})$ transitions with a notable negative thermal expansivity along the c-axis for T < 25K. These measurements provide a clear evidence of significant coupling between the magnetic and lattice orders in this material. Two main anomalies were observed, one at the onset of ferroelectricity (T_{C1}) and the other at T_{C2} where another sharp change in the dielectric order was seen. The lattice anomalies were highly anisotropic where the a and b-axes expand as the c-axis shrinks upon cooling through T_{C1} and T_{C2} . The incommensurate AFM ordering of the Mn^{3+} spins has been associated with T_{N1} . This is characterized by a high degree of frustration that subsequently drives the ferroelectric displacements at the lock-in transition to a commensurate magnetic structure. The second magnetic anomaly at T_{N2} was shown via neutron diffraction to be due to a spin-reorientation phase transition. Dielectric measurements under isotropic pressure revealed that the two ferroelectric transitions are correlated and that the pressure stabilizes the ferroelectricity below T_{C2} .

Clarina dela Cruz

Date submitted: 13 Sep 2005

Electronic form version 1.4