Abstract Submitted
for the TSF05 Meeting of The American Physical Society

Abstract

Morphology and structure of copper-phthalocyanine and ironphthalocyanine thin films on $\mathbf{A g}(111)$ KEDAR MANANDHAR, KENNETH PARK, Baylor University, ZHEN SONG, TANHONG CAI, SHUGUO MA, JAN HRBEK, Brookhaven National Laboratory, BAYLOR UNIVERSITY COLLABORATION, BROOKHAVEN NATIONAL LABORATORY COLLABORATION -Copper-phthalocyanine and iron-phthalocyanine have been in situ deposited onto $\mathrm{Ag}(111)$ surface at room temperature by vacuum sublimation. Thin heteroepitaxial films formed thereof have been investigated using scanning tunneling microscopy. When annealed up to $\sim 500^{\circ} \mathrm{K}$, both molecules form well-ordered square lattices on the hexagonal substrate lattice but result in different molecular orientations within the surface unit cell. For CuPc , benzo units of the molecules are rotated by approximately 30° with respect to the surface lattice vectors forming a high-density packing whereas for FePc the benzo units are rotated by about 45°. Consequently, the square lattice constant for CuPc measured at $\sim 14 \AA$ is significantly smaller than that of $\sim 16 \AA$ for FePc. Annealing to $\sim 700^{\circ} \mathrm{K}$ results desorption of as much as 70% of surface monolayer of phthalocyanine molecules. The aggregates are observed in dendrite-like form, and further discussion of temperature effects on CuPc and FePc thin films will be presented.

Kedar Manandhar
Baylor University

