Abstract Submitted for the TSF05 Meeting of The American Physical Society

Scaling of the Step Position Distribution of Stepped Crystal Surfaces¹ HOWARD L. RICHARDS, AMBER N. BENSON², Physics, Texas A&M University-Commerce, T.L. EINSTEIN, Physics, University of Maryland, College Park — Both Monte Carlo simulations and Scanning Tunneling Microscope images of stepped crystal surfaces can only include some finite length, Δy , along average direction of steps. This has important consequences, because the variance of the Step Position Distribution (SPD), $\sigma_Q^2(\Delta y)$, calculated from these "snapshots" depends on Δy . For $\Delta y < \xi_Q$, where ξ_Q is the correlation length of the steps, $\sigma_Q^2(\Delta y) \propto (\Delta y)^{0.8}$; for $\Delta y > 4\xi_Q$, $\sigma_Q^2(\Delta y)/\sigma_{Q,W}^2 \approx 0.158 + 0.318ln(\Delta y)$, where $\sigma_{Q,W}^2$ is the finite value of $\sigma_Q^2(\infty)$ predicted by the two-step approximation which yields the generalized Wigner distribution (GWD) for the Terrace Width Distribution (TWD). A "Wigner length", L_W , can be defined by $\sigma_Q^2(L_W) = \sigma_{Q,W}^2$. It appears that $L_W \approx 14.2\xi_Q$ independent of the magnitude of step interaction. This is very close to a length which must be introduced to reproduce the GWD from an ensemble averge of Gruber-Mullins approximations of the TWD.

¹Supported by a Cottrell College Science Award from Research Corporation. ²Currently at Physics, Mississippi State University.

> Howard L. Richards Physics, Texas A&M University-Commerce

Date submitted: 26 Sep 2005

Electronic form version 1.4