Abstract Submitted for the TSF06 Meeting of The American Physical Society

Spectroscopic analysis of Pr^{3+} (4f²) absorption intensities in a plastic host (HEMA). DAVID STONESTREET, KELLY NASH, DOUG DEE, RAYLON YOW, JOHN GRUBER, DHIRAJ SARDAR, University of Texas at San Antonio — A spectroscopic investigation has been performed on the Pr^{3+} ions embedded in 2-hydroxyethyl methacrylate (HEMA) solid plastic host. The standard Judd-Ofelt analysis was applied to the room temperature absorption intensities of Pr^{3+} transitions to determine three phenomenological intensity parameters: Ω_2 , Ω_4 and Ω_6 . Values of the intensity parameters were subsequently used to determine the decay rates (emission probabilities), radiative lifetimes, and branching ratios of the principal intermanifold transitions of Pr^{3+} from the 3P_2 , 1D_2 , and 3P_0 manifold states to the lower-lying manifolds. The spectroscopic properties Pr^{3+} in HEMA will be compared with those in glasses.

¹National Science Foundation Grant # DMR-0602649, and American Chemical Society/Petroleum Research Fund No. PRF 43862-B6.

David Stonestreet University of Texas at San Antonio

Date submitted: 30 Aug 2006 Electronic form version 1.4