Abstract Submitted for the TSF06 Meeting of The American Physical Society

FTIR Matrix Study of Transition-Metal Carbon Clusters and Potential Circumstellar Molecules: TiC₃ R.E. KINZER, JR., C.M.L. RITTBY, W.R.M. GRAHAM, Texas Christian University — Results will be presented of recently initiated studies on the structures and infrared spectra of transition metal-carbon clusters that may be of interest in circumstellar shells or other astrophysical environments. Such clusters are also of interest as fundamental building blocks for larger metal-carbon structures, such as metallocarbohedrenes. The FTIR (Fourier transform infrared) spectrum of TiC₃ was observed by trapping the vapors produced during dual Nd:YAG laser ablation of Ti and C rods in solid Ar at ~10 K. Measurements of frequencies and ¹³C isotopic shifts have enabled the identification of the fan-like (C_{2v}) isomer of TiC₃ with vibrational fundamentals $\nu_3(a_1) = 624.3$ and $\nu_5(b_2) = 1484.2$ cm⁻¹. The results are in good agreement with the predictions of DFT calculations at the B3LYP/6-311G(3df, 3pd) level. The observed C_{2v} structure is also consistent with the results from an earlier photoelectron spectroscopy study.

Raymond Kinzer, Jr. Texas Christian University

Date submitted: 08 Sep 2006 Electronic form version 1.4