Abstract Submitted for the TSF06 Meeting of The American Physical Society

FTIR Isotopic Study of the $\nu_1(\sigma)$ Stretching Mode of Linear CrC₃ Condensed in Solid Ar S.A. BATES, C.M.L. RITTBY, W.R.M. GRAHAM, Texas Christian University — Earlier gas phase investigations of chromium-carbon species using photoelectron spectroscopy (PES) and density functional theory (DFT) calculations have shown the existence of both the C_{2v} (fan-shaped) and linear isomers of CrC₃.¹ We report the first results from Fourier transform infrared (FTIR) spectroscopic studies on CrC₃, produced by Nd:YAG laser ablation of carbon and chromium rods and trapping the products in solid Ar at ~10 K.² Extensive ¹³C isotopic shift measurements and predictions from DFT calculations at the B3LYP/6-311G+(3df) level show that linear CrC₃ is the ground state isomer and enables the assignment of its $\nu_1(\sigma)$ fundamental at 1789.5 cm⁻¹.

¹H. -J. Zhai, L. -S. Wang, P. Jena, G. L. Gustev, and C. W. Bauschlicher, Jr., J. Chem. Phys. <u>120</u>, 8996 (2004). ²S. A. Bates, C. M. I. Bitthy, and W. B. M. Craham. I. Chem. Phys. <u>125</u>, 074506

²S. A. Bates, C. M. L. Rittby, and W. R. M. Graham, *J. Chem. Phys.* <u>125</u>, 074506 (2006).

Sarah Bates Texas Christian University

Date submitted: 08 Sep 2006

Electronic form version 1.4