Abstract Submitted
for the TSF06 Meeting of
The American Physical Society

A search for $Wb\bar{b}$ and WH production in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV using $1fb^{-1}$ of data. VENKATESH KAUSHIK, JAEOHOON YU, HYUN-WOO KIM, D0 COLLABORATION — A search for $Wb\bar{b}$ and WH production in $p\bar{p}$ collisions at a center of mass energy of $\sqrt{s} = 1.96$ TeV is presented. Events containing one isolated electron, missing transverse energy and one or two b-tagged jets are considered. The integrated luminosity accumulated by the DØ experiment at the Tevatron collider corresponds to $1.0fb^{-1}$. In the double b-tagged sample, good agreement between data and the Standard Model is achieved only when $Wb\bar{b}$ production is included. Since we cannot establish its presence with high significance yet, we establish a 95% C.L. upper limit on the $Wb\bar{b}$ production cross section by requiring b jets with transverse momenta $p_T > 20$ GeV and a pseudorapidity $\eta < 2.5$. The upper limit on WH production cross section is obtained by requiring additional selection on the $b\bar{b}$ invariant mass to minimize $Wb\bar{b}$ background contributions to the Higgs signal. Since its mass is unknown, Higgs masses in the range of 115 GeV/c^2 to 155 GeV/c^2 are scanned to establish the upper limit.

Venkatesh Kaushik

Date submitted: 07 Sep 2006

Electronic form version 1.4