Observation of the high sensitivity of Positron Annihilation induced Auger electron spectroscopy to thermally induced changes in the oxidation state of Cu atoms at the surface of previously oxidized Cu(100)\(^1\)

M.P. NADESALINGAM, S. MUKHERJEE, N. FAZLEEV, B.R. DAVIS, J. ZHU, A.H. WEISS, Department of Physics, The University of Texas at Arlington — Changes in the surface of an oxidized Cu(100) single crystal resulting from vacuum annealing over a temperature range from 20 °C to 800 °C has been investigated using Positron annihilation induced Auger electron spectroscopy (PAES). The PAES measurements show a large monotonic increase in the intensity of the annihilation induced Cu (M\(_{2,3}\)VV) Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 °C. The intensity then decreases monotonically as the annealing temperature is increase to ∼600 °C. The Ps fraction, \(f_{PS}\) of these surfaces was found to have the opposite trend going from \(f_{PS} = 0.79\) for the surface before any annealing to \(f_{PS} = 0.51\) after annealing at 300 °C. These results provide a clear demonstration of the thermal reduction of the copper oxide surface after annealing at 300 °C followed by re-oxidation of the copper surface at the higher annealing temperatures presumably due to the diffusion of subsurface oxygen to the surface.

\(^1\)Research is funded by Welch Foundation (grant Y-1100)