Abstract Submitted for the TSF07 Meeting of The American Physical Society

Optical Characterization of the Ho³⁺ Complex in HEMA¹ MANUEL RODRIGUEZ III, DHIRAJ SARDAR, KELLY NASH, RAYLON YOW, JOHN GRUBER, University of Texas at San Antonio — The spectroscopic properties of the Ho³⁺ complex embedded in 2-hydroxyethyl methacrylate (HEMA) are investigated. The intensities of the room temperature absorption spectra of the $\text{Ho}^{3+}(4f^{10})$ transitions in $\text{Ho}(\text{NO}_3)_3.5\text{H}_2\text{O}$:HEMA have been analyzed using the Judd-Ofelt (J-O) model to obtain the phenomenological intensity parameters, Ω_2 , Ω_4 , and Ω_6 . These parameters are used to calculate the spontaneous emission probabilities, radiative lifetimes, and branching ratios of the Ho³⁺ transitions from the upper multiplet manifolds to the corresponding lower-lying multiplet manifolds of ${}^{2S+1}L_J$ Ho³⁺(4 f^{10}), which include ${}^5G_4 + {}^3K_7^{(2)}$, 5G_5 , ${}^5G_6 + {}^5F_1$, ${}^5F_2 + {}^3K_8^{(2)}$, 5F_3 , ${}^5F_4 + {}^5S_2$, and 5F_5 . The predicted room temperature fluorescence lifetime of 5I_7 to ⁵I₈ is about 0.5 ms, suggesting a reasonably strong interaction between the complex and the polymer. A comparative study of $Ho^{3+}(4f^{10})$ ions in different host materials suggests that Ho(NO₃)₃.5H₂O:HEMA could be an excellent candidate for certain applications such as narrow band pass filters, especially in the visible-to-near infrared region of the spectrum.

¹This research was supported in part by the National Science Foundation Grant No. DMR-0602649 and the Petroleum Research Fund by the American Chemical Society: PRF # 43862-B6.

Manuel Rodriguez III University of Texas at San Antonio

Date submitted: 27 Sep 2007 Electronic form version 1.4