Abstract Submitted for the TSF07 Meeting of The American Physical Society

A Student Experiment to Prove the Laws of Conservation of Energy and Momentum for Nuclear Reactions Using a 1.5 MeV Van de Graaff Accelerator¹ J'NAE ZWASCHKA, Tarleton State University, P. KEA-HEY, Southwestern University, L. PHINNEY, J. DUGGAN, University of North Texas — The year 1931 saw the first artificially induced nuclear reaction in the Cavendish Laboratory. The men behind this ground breaking experiment, J.D. Cockcroft and E.T.S. Walton, used a 150 kilovolt accelerator with a screen of zinc sulfide to detect the emitted alpha particles from the ⁷Li (p, α) α reaction. In 1951 the Nobel Prize was awarded in recognition of work that in effect started the nuclear age. The Q value for a nuclear reaction. In order to study the kinematic equations the following reactions were performed: ⁷Li (p, α) α , ⁶Li (p,³He) α , ¹⁹F (p, α)¹⁶O and ¹¹B (p, α)⁸Be. The experiments were carried out with a 1.5 MeV proton beam from a Van de Graaff accelerator. The experimental energies for the reaction products were compared to the theoretical values obtained using the kinematic equations.

¹Funded by NSF's REU grant, 2007.

J'Nae Zwaschka Tarleton State University

Date submitted: 27 Sep 2007

Electronic form version 1.4