Abstract Submitted for the TSF07 Meeting of The American Physical Society

Absorption Intensities Analysis of Ho^{3+} : KPb_2Cl_5 SREERENJINI CHANDRASEKHARAN, KELLY L. NASH, JOHN B. GRUBER, DHIRAJ K. SAR-DAR, University of Texas at San Antonio — Optical absorption and emission intensities were investigated for Ho³⁺ in single crystal Ho³⁺:KPb₂Cl₅. Room temperature absorption intensities of $Ho^{3+}(4f^{10})$ transitions in $Ho^{3+}:KPb_2Cl_5$ have been analyzed using the Judd-Ofelt (J-O) approach in order to obtain the phenomenological intensity parameters. The J-O intensity parameters are then used to calculate the spontaneous emission probabilities, radiative lifetimes, and branching ratios of the Ho³⁺ transitions from the upper multiplet manifolds to the corresponding lowerlying multiplet manifolds ${}^{2S+1}L_J$ of Ho³⁺(4f¹⁰). Presently we are measuring the room temperature fluorescence lifetime of this transition and it will be used to determine the quantum efficiency of Ho³⁺:KPb₂Cl₅. From the fluorescence spectrum, the emission cross section of the important manifold ${}^{5}I_{7} \rightarrow {}^{5}I_{8}(2.0 \mu m)$ transition will be determined. The 8K absorption spectrum was examined as well. Selected manifolds were analyzed in terms of the crystal field splitting using a charge-compensation model first developed for Er³⁺ doped into KPb₂Cl_{5.} The optical and spectroscopic characteristics of Ho³⁺:KPb₂Cl₅ show that this material has a potential for $2.0\mu m$ laser system.

> Sreerenjini Chandrasekharan University of Texas at San Antonio

Date submitted: 28 Sep 2007

Electronic form version 1.4