Abstract Submitted for the TSF07 Meeting of The American Physical Society

Ferromagnetism in Mn-implanted Ge and epitaxial GeC^1 SAMARESH GUCHHAIT, JOHN MARKERT, Department of Physics, The University of Texas at Austin, MUSTAFA JAMIL, SANJAY BANERJEE, Department of ECE, The University of Texas at Austin — 20 keV energy Mn ions were implanted in two samples: 1) bulk Ge (100) and 2) a 250 nm thick epitaxial GeC film, grown on a Si (100) wafer. The GeC thin film was grown by UHV chemical vapor deposition using a mixture of germane (GeH₄) and methylgermane (CH₃GeH₃) gases and contains less than 1% carbon. X-ray diffraction data shows a single crystal phase for the GeC film, and the surface rms roughness is about 0.3 nm, measured with AFM. The Mn implant dose was $1.1 \times 10^{16}/\text{cm}^2$ at a temperature of 300° C for both samples. For this relatively low energy Mn ion implant, the range is about 17 nm and the straggle is about 9 nm. A SQUID magnetometer study shows ferromagnetism in both samples. While the Curie temperature for both samples is about 180 K. the in-plane saturated magnetic moment per unit area for the first sample is about 2.2×10^{-5} emu/cm² and that for the second sample is about 3.0×10^{-5} emu/cm². These results show clear enhancement of magnetic properties of the Mn-implanted GeC thin film over the identically implanted Ge layer due to the presence of a small amount of carbon.

¹This work was supported by SWAN and NSF DMR 0605828.

Samaresh Guchhait Department of Physics, The University of Texas at Austin

Date submitted: 28 Sep 2007

Electronic form version 1.4