Abstract Submitted for the TSF09 Meeting of The American Physical Society

A Complete Discharging Solution for LIGO¹ QUENTIN FUNK, DENNIS UGOLINI, Trinity University — Surface charge on LIGO interferometer optics creates a changing electric field that exerts an oscillating pull on the optics, creating a fake signal. Replacing viton earthquake stops with fused silica reduced charging from $(6\pm1)\times10^{-12}$ C/cm² to $(-4\pm1)\times10^{-14}$ C/cm² per contact. We also investigated three ways to discharge an optic in vacuum. UV light removes negative charge via the photoelectric effect with a time constant of $(9\pm3)\times10^{-6}$ s⁻¹, and neutralizes positive charge by liberating electrons from a reaction mass at a rate of $(-9.89\pm.2)\times10^{-4}$ C/s. Both polarities are discharged faster at lower wavelengths. The energy to reduce negative surface charge by 1/e is $(3\pm1)\times10^{-2}$ J/cm², which could damage the reflective optical coatings over time. A Kimball Physics electron gun eliminates positive charge within seconds, but we believe that a modified Bayard-Alpert gauge could be a complete, less expensive, and more robust discharging solution.

¹Supported by the National Science Foundation Grant No. PHY-0757801.

Dennis Ugolini Trinity University

Date submitted: 23 Sep 2009 Electronic form version 1.4