FTIR Argon Matrix and DFT Study of the Vibrational Spectrum of SiC$_5$1 T.H. LE, W.R.M. GRAHAM, Texas Christian University, TCU MOLECULAR PHYSICS LAB TEAM — This is the first Fourier transform infrared (FTIR) study on SiC$_5$, which is a part of ongoing FTIR and density functional theory (DFT) research, investigating the structures and vibrations of silicon-carbon molecules. Vibrational spectra of SiC$_5$ were obtained by Nd:YAG laser ablation of a sintered rod, made of 13C-enriched graphite and silicon, and trapping the resulting vapor in solid Ar at \sim15 K. The $\nu_4(\sigma_u)$ asymmetric stretching fundamental of SiC$_5$ has been observed at 936.9 \pm 0.2 cm$^{-1}$. The measured isotopic shifts are in good agreement with the predictions of DFT calculations. This information will help in identifying SiC$_5$ in circumstellar and interstellar environments. Also, it has potential applications for optoelectronic and semi-conductor devices.

1The TCU Research and Creative Activities Fund funded this research.

T. H. Le
Texas Christian University

Date submitted: 24 Sep 2010

Electronic form version 1.4