Abstract Submitted for the TSF10 Meeting of The American Physical Society

Synthesis,

Morphology, and Optical Characterization of Nanocrystalline $\mathbf{Er}^{3+}:\mathbf{Y}_2\mathbf{O}_3^1$ SREERENJINI CHANDRA, FRANCIS LEONARD DEEPAK, JOHN B. GRU-BER, DHIRAJ K. SARDAR, UTSA — We describe a methodology to synthesize trivalent erbium doped yttrium oxide ($\mathbf{Er}^{3+}:\mathbf{Y}_2\mathbf{O}_3$) nanoparticles having an average diameter of about 25 nm. The room-temperature absorption spectrum obtained between 400 and 900 nm wavelength range and the fluorescence spectra of the \mathbf{Er}^{3+} $(4f^{11}) \ ^2H(2)_{11/2} + ^4S_{3/2} \rightarrow \ ^4I_{15/2}$ and $^4F_{9/2} \rightarrow \ ^4I_{15/2}$ transitions were analyzed in detail. The lifetimes for the $^2H(2)_{11/2} + ^4S_{3/2}$ and $^4F_{9/2}$ metastable states have been measured and investigated the effect of \mathbf{Er}^{3+} concentrations and particle size on the emission intensity and decay times. The detailed structural and optical analyses suggest that the nanoparticles of $\mathbf{Er}^{3+}:\mathbf{Y}_2\mathbf{O}_3$ have potential applications in diverse fields of photonics including laser systems and optical communication devices.

¹This research was supported by the National Science Foundation Grant No. DMR-0934218.

Sreerenjini Chandra UTSA

Date submitted: 27 Sep 2010

Electronic form version 1.4