Abstract Submitted for the TSF11 Meeting of The American Physical Society

The Beta Delayed Proton and Gamma Decay of ²⁷P For Nuclear Astrophysics¹ E. SIMMONS, TAMU Cyclotron Institute, L. TRACHE, A. BANU, M. MCCLESKEY, B. ROEDER, A. SPIRIDON, R.E. TRIBBLE, T. DAVINSON, P.J. WOODS, G.J. LOTAY, J. WALLACE, D. DOHERTY, A. SAAS-TAMOINEN — The creation site of 26 Al is still under debate. It is thought to be produced in hydrogen burning and in explosive helium burning in novae and supernovae, and possibly also in the H-burning in outer shells of red giant stars. Also, the reactions for its creation or destruction are not completely known. When ²⁶Al is created in novae, the reaction chain is: ${}^{24}Mg(p,\gamma){}^{25}Al(\beta+v){}^{25}Mg(p,\gamma){}^{26}Al$, but this chain can be by-passed by another chain: ${}^{25}\text{Al}(p,\gamma){}^{26}\text{Si}(p,\gamma){}^{27}\text{P}$ and it can also be destroyed directly. The reaction ${}^{26m}\text{Al}(p,\gamma){}^{27}\text{Si}^*$ is another avenue to bypass the production of ²⁶Al and it is dominated by resonant capture. We study these resonances by an indirect method, through the β -decay of ²⁷P. We use ²⁷P produced and separated with MARS and a setup which allows increased efficiency for low energy protons and for high-energy gamma-rays. We measure gamma-rays and β -delayed protons emitted from states above the proton threshold in the daughter nucleus ²⁷Si $(S_p = 7.463 \text{ MeV})$ to identify and characterize the resonances. Its lifetime was also measured with accuracy under 1%.

¹DE-FG02-93ER40773

Ellen Simmons TAMU Cyclotron Institute

Date submitted: 08 Sep 2011

Electronic form version 1.4