Abstract Submitted for the TSF12 Meeting of The American Physical Society

Dynamic Heterogeneity in Ionic Liquids near and below the Glass Transition: Rotational Diffusion of Probes in 1-Butyl-3methylimidazolium Hexafluorophosphate FEHMI BARDAK, JUSTIN R. RA-JIAN, LARRY G. HINES, RICHARD A. BARTSCH, EDWARD L. QUITEVIS, Texas Tech University — Dynamic heterogeneity in the ionic liquid, 1-butyl-3methylimidazolium hexafluorophosphate ($[Bmim][PF_6]$) ($T_g = 196$ K) near glass transition is investigated by conducting probe rotational diffusion experiments on rubrene and tetracene in $[Bmim][PF_6]$ using the fluorescence recovery after photobleaching (FRAP) technique. Rotational anisotropy decays for the probes in the temperature range $T_{\rm g}$ -6 to $T_{\rm g}$ +4 are well described by the stretched exponential function. The stretching parameter is found to be constant for both probes with $\beta_{\text{tetracene}} = 0.71$ and $\beta_{\text{rubrene}} = 0.88$. The viscosity of [Bmim][PF_6] at high temperatures from 353 K to 283 K and near $T_{\rm g}$ from 203 K to 196 K can be fit by a single VFT equation. In the temperature range of our measurements, the rotational diffusion of these probes in $[Bmim][PF_6]$ is decoupled from structural relaxation with a rotational correlation time following a fractional Debye-Stokes-Einstein (DSE) relation.

> Fehmi Bardak Texas Tech University

Date submitted: 24 Sep 2012

Electronic form version 1.4