Stochastic Optimization Techniques on Parameter Estimation of Binary Inspirals: Particle Swarm Optimization and Genetic Algorithm

SHIHAN WEERATHUNGA, Center for Gravitational Wave Astronomy, University of Texas at Brownsville; Department of Physics, University of Texas at San Antonio, SOUMYA MOHANTY, Center for Gravitational Wave Astronomy, University of Texas at Brownsville — The search for gravitational wave (GW) signals from inspiraling compact object binaries is performed using matched filtering on GW detector data. Numerical maximization is applied over a set of matched filter outputs to estimate signal parameters. The noisy nature of the data and the large number of signal parameters lead to a highly multi-modal and high dimensional objective function. This precludes the use of deterministic locally convergent optimization algorithms and a plain grid search is computationally prohibitive for even a modest number of signal parameters. Stochastic optimization methods can be used to efficiently find optimal solutions in such situations. We are engaged in a comprehensive study of the performance of two popular stochastic optimization algorithms, Particle Swarm Optimization and Genetic Algorithm, on the GW matched filtering problem. Results are presented here for a two dimensional testbed binary inspiral problem. Studies of higher dimensional problems are in progress.

1Center for Gravitational Wave Astronomy, University of Texas at Brownsville.
2Dr. Soumya Mohanty is the adviser of Shihan Weerathunga.