Two-Body Resonances with Effective Field Theory1 JABER BALEHABASHI, SEAN FLEMING, SRIMOYEE SEN, UBIRAJARA VAN KOLCK, University of Arizona — Resonance states are of particular importance for the scattering of two particles in quantum mechanics. In this talk we \cite{Balalhabashi2016} build an effective field theory (EFT) description for scattering around a low-energy two-body resonance, by taking into account the subtleties of power counting for these states in an effective-range expansion (ERE). We demonstrate that a careful choice of leading order and next-to-leading order terms in an effective Lagrangian can give rise to a systematic ERE around a resonance, with controlled error estimates. We demonstrate the application of the EFT developed here by comparing phase shifts and pole positions with those of a toy model. The formalism developed in this presentation is relevant to narrow low-lying Feshbach resonances in cold atoms; our goal is to eventually describe nuclear resonances in the scattering of alpha particles.

1This material is based upon work supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under award number DE-FG02-04ER41338

Jaber Balalhabashi
University of Arizona

Date submitted: 29 Sep 2016
Electronic form version 1.4