Computing osmotic permeabilities of aquaporins AQP4, AQP5, and GlpF from near-equilibrium simulations1 THIERRY WAMBO, ROBERTO RODRIGUEZ, LIAO CHEN, The University of Texas at San Antonio — Measuring or computing the single-channel permeability of aquaporins/aquaglyceroporins (AQPs) has long been a challenge. We report large scale simulations of osmotic current under sub M gradient through three AQPs (water channels AQP4 and AQP5 and glycerol-water channel GlpF). These simulations were implemented with hybrid periodic boundary conditions devised to avoid the artifactitious mixing across the membrane in a regular PME simulation. The computed single-channel permeabilities at 5°C and 25°C are in agreement with recently refined experiments on GlpF. The Arrhenius activation energies extracted from our simulations for all the three AQPs agree with the \textit{in vitro} measurements. We observe that AQP4, that is particularly rich in the central nervous system, is more efficient in water conduction and more temperature-sensitive than other water-only channels (excluding glycerol channels that also conduct water when not inhibited by glycerol).

1The authors acknowledge support from the NIH (GM 084834 and GM 060655) and the computing resources provided by the Texas Advanced Computing Center at University of Texas at Austin.