Abstract Submitted for the TSF17 Meeting of The American Physical Society

Modulation of Photoluminescence of Monolayer MoS_2^1 ZHEN-RONG ZHANG, BLAKE BIRMINGHAM, Department of Physics, Baylor University, JIANTAN YUAN, Department of Materials Science and NanoEngineering, Rice University, MATTHIAS FILEZ FILEZ, DONGLONG FU, Inorganic Chemistry and Catalysis Group, Utrecht University, JUN LOU, Department of Materials Science and NanoEngineering, Rice University, JONATHAN HU, Electrical Computer Engineering, Baylor University, BERT WECKHUYSEN, Inorganic Chemistry and Catalysis Group, Utrecht University — Modulation of photoluminescence (PL) of two-dimensional materials is important for its optoelectronic and catalysis applications. We have systematically studied the effect of thermal and photo-reaction of various ambient molecules $(H_2O, O_2, and N_2)$ on the photoluminescence of CVD grown monolayer MoS_2 . The results show that the photoreaction of the O_2 with MoS_2 monolayer can affect the PL intensity. For the application of desulfurization of gasoline, we compared the difference in the interaction of pyridine molecules with monolayer MoS_2 . Our results show that liquid pyridine and gaseous pyridine interact differently with MoS₂ monolayers.

¹We acknowledge the support of the National Science Foundation Grant No. CHE-1609608.

> Zhenrong Zhang Department of Physics, Baylor University

Date submitted: 21 Sep 2017

Electronic form version 1.4