Abstract Submitted for the TSF17 Meeting of The American Physical Society

Introduction to paths H and application of homotopy theory in **physics** FIDELE TWAGIRAYEZU, Texas State University — Firstly, we introduced the action of space operators on a regular interval to generate a variable interval. Secondly, we introduced the concept of a family T of paths H, and we showed that these paths are homotopic on a contractible space even though they do not have common endpoints. Finally, we applied the concept of paths H on a contractible space in physics. Let A be a subset of X. Let $I_{\{a,b\}}$ be a regular interval such that $\{I_{a,b}\}\subseteq A$, for $a, b \in A$. Let $(\alpha_{a,\beta b})$ be space operators associated with $\{a,b\}$, then a variable interval is $I_{\{x,y\}} = (\alpha_a, \beta_b)I_{\{a,b\}}$ such that $\{I_{\{x,y\}}\} \subseteq X$, $\min\{I_{\{x,y\}}\}=ax$, and $\max\{I_{\{x,y\}}\}=by$ for all x, $y \in X$. Let X be a topological space. Let f, g: $[0,1] \to X$ be continuous paths for all $t \in [0,1]$. T is the family of continuous paths H: $[0,1]x[0,1] \rightarrow X$ such that H(t,0)=f, H(t,1)=g for all $t \in [0,1]$, and $H(0,s_f) = f(0), H(1,s_f) = f(1), H(0, s_g) = g(0), H(1,s_g) = g(1) \text{ for all } s_f, s_g \in [0,1].$ Such f and g are H-topic paths. If X is contractible, then H is a homotopy. In addition, if $s_f = s_g$, then f(0) = g(0) and f(1) = g(1), and the family T of paths H becomes the wellknown homotopy of paths (with same endpoints). Let M_G be a simply connected gravitational field. We showed that the Hamiltonian for free fall-paths on $M_{\rm G}$ obeys the homotopy theory.

> Fidele Twagirayezu Texas State University

Date submitted: 28 Sep 2017

Electronic form version 1.4