Abstract Submitted for the TSS08 Meeting of The American Physical Society

Spectroscopic Analysis of Nd³⁺:Y₂O₃ Nanocrystals for Photonic and Biomedical Applications ROBERT C. DENNIS, KELLY L. NASH, JOHN B. GRUBER, DHIRAJ K. SARDAR, UTSA — Spectroscopic properties are investigated for Nd^{3+} in nanocrystalline Nd^{3+} : Y_2O_3 . Room temperature absorption intensities of $Nd^{3+}(4f^3)$ transitions in synthesized $Nd^{3+}: Y_2O_3$ nanocrystals have been analyzed using the Judd-Ofelt (J-O) approach in order to obtain the phenomenological intensity parameters. The J-O intensity parameters are used to calculate the spontaneous emission probabilities, radiative lifetimes, and branching ratios of the Nd^{3+} transitions from the upper multiplet manifolds to the corresponding lower-lying multiplet manifolds ${}^{2S+1}L_J$ of Nd³⁺(4f³). A comparison between the spectroscopic properties of the Nd³⁺ nanocrystals suspended in epoxy, Chitosan, and 2-hydoxyethyl methacrylate (HEMA) has been performed. This study suggests that synthesized $Nd^{3+}: Y_2O_3$ nanocrystals could be an excellent alternative to single-crystal Ho³⁺:Y₂O₃ for various photonic applications, in particularly biosensors, when used in the near infrared (0.8 to 0.9 μ m) region. *This research was supported in part by the National Science Foundation Grant No. DMR-0602649 and the NSF-sponsored CBST at UC Davis under the cooperative agreement No. PHY-0120999.

> Robert C. Dennis UTSA

Date submitted: 11 Feb 2008

Electronic form version 1.4