Abstract Submitted for the TSS09 Meeting of The American Physical Society

Intensity analysis and energy-level modeling of Nd^{3+} in $Nd^{3+}: Y_2O_3$ nanocrystals in polymeric hosts ROBERT DENNIS, KELLY NASH, DHIRAJ SARDAR, JOHN GRUBER, University of Texas at San Antonio — Optical absorption and emission intensities are investigated for Nd^{3+} in nanocrystalline Nd^{3+:}Y₂O₃. Room temperature absorption intensities of Nd³⁺(4 f^3) transitions in synthesized Nd³⁺:Y₂O₃nanocrystals have been analyzed using the Judd-Ofelt (J-O) approach to obtain the phenomenological intensity parameters. The J-O intensity parameters are used to calculate the spontaneous emission probabilities, radiative lifetimes, and branching ratios of the Nd³⁺ transitions from the upper multiplet manifolds to the corresponding lower-lying multiplet manifolds ${}^{2S+1}L_{J}$ of $Nd^{3+}(4f^3)$. The emission cross sections and room temperature fluorescence lifetimes of the important intermanifold ${}^{4}F_{3/2} \rightarrow {}^{4}I_{J}(J=9/2, 11/2, 13/2, 15/2)$ transitions have been determined. We also compare the spectra of the $Nd^{3+}:Y_2O_3$ nanocrystals to those of the nanocrystals embedded in polymeric matrices of epoxy and chitosan, and we find similarities in terms of the detailed Stark energy levels of the Nd^{3+} ion in the Y_2O_3 nanocrystalline host. The 300 K spectra are analyzed for the energy (Stark) level transitions between the ${}^{2S+1}L_I$ multiplet manifolds of Nd³⁺(4f³). The results of this study are also compared with a crystal-field splitting analysis reported earlier for single-crystal Nd^{3+} : Y₂O₃ grown by a modified flame fusion method.

> Robert Dennis University of Texas at San Antonio

Date submitted: 19 Feb 2009

Electronic form version 1.4