Abstract Submitted for the TSS09 Meeting of The American Physical Society

Spectroscopic Analysis of Nd³⁺:Y₂O₃ Nanocrystals in Polymers and Copolymers¹ NATHAN RAY, KELLY NASH, ROBERT DENNIS, JOHN GRUBER, DHIRAJ SARDAR, MAO GEN ZHANG, University of Texas at San Antonio — Spectroscopic properties of nanocrystalline Nd³⁺ in Nd³⁺:Y₂O₃embedded in solid plastic hosts (2-hydroxyethyl methacrylate (HEMA) and copolymer of HEMA/styrene) are characterized. The standard Judd-Ofelt model has been applied to the room temperature absorption intensities of $Nd^{3+}(4f^3)$ transitions in the plastic hosts to determine the three phenomenological intensity parameters: Ω_2 , Ω_4 , and Ω_6 . Intensity parameters are then utilized to determine the radiative decay rates and branching ratios of the $Nd^{3+}(4f^3)$ transitions from the upper manifold state ${}^{4}F_{3/2}$ to the lower-lying multiplet manifolds ${}^{4}I_{J}(J=9/2, 11/2, 13/2, 15/2)$. Emission cross sections and room temperature fluorescence lifetimes of the important intermanifold ${}^{4}F_{3/2} \rightarrow {}^{4}I_{J}(J=9/2, 11/2, 13/2)$ transitions are determined. We investigate the detailed crystal-field splitting of the energy levels of the Nd³⁺ion in the Y_2O_3 /polymer host. The 300 K spectra are analyzed for the energy level transitions between the ${}^{2S+1}L_J$ multiplet manifolds of Nd³⁺(4f³). Results are also compared with a crystal-field splitting analysis reported earlier for single-crystal $Nd^{3+}:Y_2O_3.$

¹This research was supported in part by the Petroleum Research Fund by the American Chemical Society: PRF # 43862-B6..

Nathan Ray University of Texas at San Antonio

Date submitted: 03 Mar 2009

Electronic form version 1.4