> Abstract Submitted
> for the TSS13 Meeting of The American Physical Society

Tangential Relations between Distorted Angles vs. Original Angles of a Traveling General Triangle in Special Relativity FLORENTIN SMARANDACHE, University of New Mexico - Let's consider a traveling general triangle $\triangle A B C$, with the speed v, along its side $B C$ on the direction on the x-axis; angles B and C are adjacent to the motion direction, while angle A is of course opposite. Let $A M$ be the perpendicular from A to the motion direction $B C$. After the contraction of the side $B C$ with the Lorentz factor $C(v)=\sqrt{1-\frac{v^{2}}{c^{2}}}$, and consequently the contractions of the oblique-sides $A B$ and $A C$ with the obliquecontraction factor

$$
O C(v, \theta)=\sqrt{C(v)^{2} \cos ^{2} \theta+\sin ^{2} \theta}
$$

where θ is the angle between respectively each oblique-side and the motion direction, one gets the general triangle $\Delta A^{\prime} B^{\prime} C^{\prime}$ with the following tangential relations between distorted angles vs. original angles of the general triangle:

$$
\tan A^{\prime}=\tan A \cdot C(v) \cdot \frac{1-\tan A_{1} \tan A_{2}}{1-\tan A_{1} \tan A_{2} C(v)^{2}},
$$

where angles $A_{1}=B A M$ and respectively $A_{2}=M A C$;

$$
\begin{aligned}
& \tan B^{\prime}=\frac{\tan B}{C(v)} ; \\
& \tan C^{\prime}=\frac{\tan C}{C(v)}
\end{aligned}
$$

Florentin Smarandache

