Abstract Submitted for the TSS13 Meeting of The American Physical Society

Orthogonal Polynomial Projection Quantization: A New Hill **Determinant Formulation**¹ CARLOS HANDY, DANIEL VRINCEANU, Texas Southern University — We present a new formulation² (OPPQ) of the configuration space Hill determinant (HD) approach,³ and its momentum space counterpart (MRF),⁴ that has non of the instabilities of the former,⁵ nor the limitations of both. Let $\Psi(\mathbf{x}) = \sum_{n=1}^{\infty} \mathbf{a}_n \mathbf{P}_n(\mathbf{x}) \mathbf{R}(\mathbf{x})$, where the \mathbf{P}_n 's are the orthogonal polynomials for a given reference function, R(x) > 0. If the system admits a linear recursive moment equation representation, the a_n 's become a finite sum with respect to the moments μ_p $= \int x^p \Psi(x)$. Constraining a_N $= 0, ..., a_{N-ms} = 0$ gives impressive results for the discrete state energies, surpassing MRF. Contrary to HD, OPPQ is an L^2 formulation in which R(x): (i) does not have to be analytic; and (ii) can be adapted to the asymptotic form of Ψ . It has been applied to 1D and 2D anharmonic potentials, including pseudo hermitian systems, as well as the difficult two dimensional dipole problem for modeling edge structures in nanomaterials.⁶

¹NSF -HRD-1137732, NRC 38-10-935

²C. R. Handy and D. Vrinceanu, to appear J. Phys A: Math. Theor. (2013).

³K. Banerjee, Proc. R. Soc. Lond. A 368 155 (1979).

⁴C. J. Tymczak, G. S. Japaridze, C. R. Handy, and Xiao-Qian Wang, Phys. Rev. Lett. 80, 3674 (1998).

⁵A. Hautot, Phys. Rev. D 33, 437 (1986).

⁶P. Amore and F. M. Fernandez, J. Phys. B 45, 235004 (2012).

Carlos Handy Texas Southern University

Date submitted: 27 Feb 2013

Electronic form version 1.4